|
Electromagnetic shielding is the practice of reducing the electromagnetic field in a space by blocking the field with barriers made of conductive or magnetic materials. Shielding is typically applied to enclosures to isolate electrical devices from the 'outside world', and to cables to isolate wires from the environment through which the cable runs. Electromagnetic shielding that blocks radio frequency electromagnetic radiation is also known as RF shielding. The shielding can reduce the coupling of radio waves, electromagnetic fields and electrostatic fields. A conductive enclosure used to block electrostatic fields is also known as a Faraday cage. The amount of reduction depends very much upon the material used, its thickness, the size of the shielded volume and the frequency of the fields of interest and the size, shape and orientation of apertures in a shield to an incident electromagnetic field. ==Materials used== Typical materials used for electromagnetic shielding include sheet metal, metal screen, and metal foam. Any holes in the shield or mesh must be significantly smaller than the wavelength of the radiation that is being kept out, or the enclosure will not effectively approximate an unbroken conducting surface. Another commonly used shielding method, especially with electronic goods housed in plastic enclosures, is to coat the inside of the enclosure with a metallic ink or similar material. The ink consists of a carrier material loaded with a suitable metal, typically copper or nickel, in the form of very small particulates. It is sprayed on to the enclosure and, once dry, produces a continuous conductive layer of metal, which can be electrically connected to the chassis ground of the equipment, thus providing effective shielding. RF shielding enclosures filter a range of frequencies for specific conditions. Copper is used for radio frequency (RF) shielding because it absorbs radio and magnetic waves. Properly designed and constructed copper RF shielding enclosures satisfy most RF shielding needs, from computer and electrical switching rooms to hospital CAT-scan and MRI facilities.〔Seale, Wayne (2007). The role of copper, brass, and bronze in architecture and design; ‘‘Metal Architecture,’’ May 2007〕〔Radio frequency shielding, Copper in Architecture Design Handbook, Copper Development Association Inc., http://www.copper.org/applications/architecture/arch_dhb/fundamentals/radio_shielding.html〕 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Electromagnetic shielding」の詳細全文を読む スポンサード リンク
|